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Abstract

Existing commercial database management systems offer little or no functionality to handle the complexity of

geoscience data—and other environmental science data—particularly in respect of missing and partially missing

(incomplete or imprecise) data items. The emphasis of both the relational theorists (Codd, Date, and others) and the

developers of database systems is on commercial applications where only rudimentary treatment of missing data is

required, in the form of NULLs, and even these are not handled properly by the SQL language.

r 2005 Elsevier Ltd. All rights reserved.
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Yesterday upon the stair,

I met a man who wasn’t there

He wasn’t there again today:

I wish that man would go away. – Children’s nonsense

rhyme

1. Introduction

Although one of the earliest relational database

management systems (G-EXEC—Jeffery and Gill,

1976a–c) was developed in the 1970s to support

applications in the geosciences, in recent years there

has been progressively more reliance on general-purpose

relational systems developed for ‘business’ users. This

has the unfortunate consequence that little or no

thought has been given to the complexities of managing

real scientific data, and the resulting mismatch causes

problems which have rarely been recognised despite the
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potentially severe consequences for the integrity of

scientific databases.
2. Database management systems and data models

The closest that many geoscientists come (or want to

come) to database management systems (DBMS) is the

Microsoft Access that comes bundled with the Office

suite, or a packaged ODBC-compliant system sitting

underneath an applications software product. Yet

effective management of their geological data is vital

for all exploration and mining projects.

From the 1970s onwards, database management has

been and remains an intensely fought-over battlefield.

The original protagonists were hierarchical and network

DBMSs following international CODASYL standards,

and relational systems following (more or less) the

principles first articulated by Codd (1970). During

the 1980s the relational systems came to dominate

the marketplace, largely by default as the older
d.
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COBOL-based hierarchical systems became obsolete

with the mainframe computers which hosted them.

The most widely used database management systems,

such as Oracle, Access, mySQL, SQLserver, Paradox,

Ingres, and others, are all claimed to be relational.

Certainly they all use SQL (Structured Query Language)

which itself is often assumed to be an indicator of a

relational database system. Unfortunately, SQL itself

violates some of the relational principles, and fails to

support others, so this is not a good criterion.
3. The missing data problem

Every geologist knows the problem: there is an

incomplete data set—a gold assay has been missed out

by the laboratory, or there is a strange-looking co-ordinate

value, a stratigraphic interval cut out by an unconformity,

or a rock-type description that has been forgotten. If the

data must be stored and processed, something must be

done to indicate that these values are missing (whether

temporarily or for good). In the bad old (good old) days

each application program would have its own way of

dealing with missing data and its own requirement for

coding it. Quite often the solution consisted of inserting a

‘-99’ or some such value in place of the absent data item.

There are two big problems with this type of solution: first,

the difficulty of ensuring that the missing-data code could

not be confused with a legitimate data value, and second,

the certainty that different application programs would

require different missing-data codes.

With the development of database management

systems, the handling of missing-data codes became

more systematic. For example, in G-EXEC (a relational

data handling system for geoscience developed in the

1970s) each data file (relational table) contained a data

description (sub-schema) in which a missing-data code

was defined for each column. This missing-data code

was carried with the data wherever it was copied, and

was recognised and acted upon by all applications

programs within G-EXEC. For new columns created by

G-EXEC application programs, a missing-data code

was set up that was very unlikely to be a valid data

value—the highest negative real number which could be

represented in the computer concerned. This was

perfectly adequate as long as the data were not

transferred to a different computer which allowed a

different range of real numbers. A similar, though

simplified, approach was adopted in developing Data-

mine (a relational database/applications system for the

mining industry, developed in the 1980s—Henley and

Stokes, 1983; Henley, 1992), in that �1.0� 1030 was

adopted as a universal numeric missing-data value, while

a blank string was used for a character data null value.

In commercial database management systems, the

question of nulls (shorthand for missing data values)
became a central issue. In most early systems, and in many

database systems to the present day, a hard-coded null-

value solution was adopted—most commonly an empty

character string. As Codd, the originator of the relational

data model, pointed out, however, any column in any

table is drawn from a ‘domain’ or extended data type

which could be defined to include any ranges of values—

including any special value which is chosen to be the

‘null’—and so no ‘null’ representation can be assumed not

to be identical with some real data value. Although his

arguments were made in the context of the relational

model, they indeed apply equally to any other type of

database management system.

Conventional logic allows for just two truth values,

true and false, leaving no room for uncertainty and no

provision for missing information. It was recognised

very early that this was inadequate for database

management systems, and the ‘null’ concept was

introduced. SQL provides a three-valued logic (3VL)

solution with most logical operations involving nulls

leading to a new logic value unknown. Unfortunately, as

Date (1995, Chapter 9) demonstrates, standard SQL

offers incomplete support even for this simple 3VL

model and as a result can lead to serious database

integrity problems. His preferred solution is to use only

2VL and a ‘default value’ approach: the database

designer or application developer is responsible for

defining one or more special values in each column, each

with a set of operations that are allowed (and which

must be coded by the designer or developer).

Codd (1990, pp. 203–204) argues convincingly that it

is an abdication of the responsibility of the database

management system to maintain integrity, if such a

crucial role is left to the user or the application to define

on a case-by-case basis. One solution to this problem,

which he proposed, lies in attaching an extra one-byte

column to each data column. This extra column would

contain a flag or ‘mark’ for each missing data value in

the column, and the data item in the column would

simply be ignored whenever a mark was encountered.

This is the method which was adopted in DB2 and some

other IBM database management systems. It has the

merit that it guarantees there cannot be any confusion

between nulls and any legitimate values.

If nulls are used, then however they are coded, both

Codd and Date assume that they imply a system of

three-valued logic: when comparing values (for example

in retrieval or table–join operations) there is either a

match (True) or a mismatch (False)—or a ‘Maybe’

(truth value ‘unknown’) when one of the operands is a

missing value. In his second version of the relational

database model, Codd (1990) takes the argument one

step further. He identifies two kinds of missing data. The

ordinary ‘missing but applicable’ value—which might be

supplied later (the missing gold assay)—is simply

unknown, while a much stronger form of ‘missing and
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inapplicable’ (the stratigraphic interval cut out by an

unconformity) is unknowable and can never be supplied.

Codd proposed that these be represented by different

marks A and I which could then be handled separately

(when required) in manipulation and interrogation of

the database. This yielded a four-valued logic system (T,

F, A, I).

More recent work by Date and Darwen (1998), as

mentioned above, retreats from this multi-valued logic

and attempts to prescribe the use of nulls altogether,

proposing instead ‘special values’ (which seem to be little

different from the ‘default values’ previously condemned

by Codd). These seem to be very much like the G-EXEC

missing-data codes mentioned above, and are either

valid values drawn from the data type, or are values

excluded from a data type which—as a result—no longer

includes the full range of representable values. Crucially,

such ‘special values’ place the interpretation and

manipulation burden entirely on applications, with the

accompanying risks of inconsistencies arising from

different treatment in different places. As far as the

geologist is concerned, this is a very retrograde step. In

fact, Codd saw that extending the ‘null’ definition to

handle partially missing data was going to be necessary,

though he did not pursue this idea. In summary:

although Date and Darwen’s proposal allows multiple

special values, it provides no help for the partial-data

problem, and the treatment of missing data is clearly not

a priority for them. This is a task which they leave to the

applications, which, in effect, is a return to the situation

in the pre-relational era.

Pascal1 proposes another solution: partitioning tables

into multiple relations in such a way as to eliminate all

occurrences of nulls. Although it certainly achieves this

objective, it is neither elegant nor easy to implement, and

potentially requires re-structuring of the database every

time an update is done. None of the existing commercial

database management systems provide the infrastruc-

ture necessary to automate such a procedure.

What the geologist needs, indeed, is quite the converse

of complete elimination of nulls: a wide range of

representations of missing and partially missing data.

Codd’s ‘mark’ concept could easily be extended to

include at least the following (and there are certainly

many more):
�

to

20
present but illegal (e.g. a co-ordinate value found to

be bad),
�
 present but suspect (a co-ordinate value thought to be

bad),
�
 below a threshold (e.g. below detection limit),
�
 above an upper threshold,
1The final null in the coffin? Outline of a relational solution

missing data, Practical Databasc Foundations #8, September

04 http://www.dbdcbunk.com.
�
 outside a defined range,
�
 not within a list of acceptable values,
�
 undefined as a result of a computation ( e.g. 0/0 or

log(-x) )

In most of these cases, a combination of a mark and a

data value will be needed. The result could be a multi-

valued logic with a number of different flavours of

‘maybe’ which could allow for processing in different

ways by applications programs as well as during

database manipulation.

Such a semantically ‘rich’ data structuring might also

allow the use of fuzzy data as advocated by Bardossy

and Fodor (2004), which may well become important in

the future, and might indeed provide a general frame-

work for expressing missing, incomplete, and imprecise

numeric data.

Complexities may arise even in apparently simple

textual data. For example, in a drillhole log, there is

quite often a ‘comments’ field. There will be entries in

this for a few intervals, but for many logged intervals

this may be blank. It does not necessarily mean that

information for these fields is ‘missing’—merely that

there is nothing sufficiently interesting about the

particular interval to merit a comment. Indeed, where

something really is missing there will often be a

comment to indicate it, such as ‘note to be added later’,

where the logged interval is so interesting that it requires

further analysis. Where there is no comment, the storage

representation is often an empty string. Unfortunately

this is interpreted by many SQL systems as ‘null’—or in

other words ‘missing’. Genuinely missing information

can be of several types, none of which might be

interpreted as ‘null’—for example, ‘note to be added

later’ as above, or ‘lost sample’.

There are further complications relating to the logic

used in database operations. Most database manage-

ment systems are designed for use in the commercial

world, where exact equality can be assured—for

example, part serial numbers, numbers of parts ordered,

prices, and dates. In contrast, with scientific data, the

degree of certainty can be very variable. When compar-

ing two data values, the normal numerical comparisons

(¼;4;o) are too rigid. What is needed is an additional

set of operators such as ‘approximately equal to’ (within

a defined tolerance?) and ‘closest match to’. There also

needs to be some mechanism for indicating the precision

or reliability of stored data in a systematic way.

This is not merely a set of academic quibbles. With

progressively more geoscientific software systems adopt-

ing ODBC standards, and abdicating responsibility for

their database management to commercial products

such as Oracle or Access, it is essential that the

capabilities of those systems meet the requirements of

the scientist and the engineer. As both Codd (1990) and

Date and Darwen (1998) point out, the SQL language is

http://www.dbdcbunk.com
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grossly deficient even in its handling of commercial

database management problems, let alone more complex

scientific and engineering data, and even the most

advanced and expensive DBMSs built around the use

of SQL will suffer from all of its defects.
4. Imprecise and incomplete data

‘Select all sample data where the gold grade is greater

than 10 g/t’. This is a simple request, which can be

translated directly into SQL to perform a straightfor-

ward retrieval operation on a table within a database.

That is the first impression, at least. A little more

thought would show, however, that it is not so simple at

all. Let us imagine that one of the records that is

retrieved contains a gold assay of 11 g/t. This matches

the selection criterion, doesn’t it? Well, not exactly.

A gold assay of 11 g/t might reflect a sample gold grade

of 11 g/t. Or the sample gold grade might really be 5, 9,

12, or 20 g/t. The real grade is actually unknown. The

assay result, whether it is a single determination or an

average of several replicate determinations, can never be

more than an estimate of the true gold grade of the

sample.

This example emphasises that there is a clear

distinction to be drawn between the real-world truth

(what the actual gold grade is—which we can never

know precisely) and the recorded data (which is a

representation of our measurements which will generally

be imperfect and imprecise. The database management

system can only contain the recorded measurements—

not the true values—and therefore numerical operations

must take into account the imprecision. Exact equality

and inequality tests on the recorded numbers are clearly

inappropriate.

All commercial SQL database management systems

were developed primarily for handling business data,

where the precision (if not the accuracy) of numeric data

can be relied on and numbers are assumed to be exact.

Thus a similar-looking request ‘Select all departments

where the number of employees is greater than 10’

usually presents no problems.

So how can we address the gold assay database

problem?

(1) We could ignore the problem, and do a simple

SQL database retrieval. This is what existing mining

software systems would do if they rely on ODBC

database connections. There is no problem in doing this,

as long as the user interprets the results correctly: the

data set returned contains all samples whose recorded

gold grade is greater than 10 g/t. It must be accepted

that some of the retrieved records represent samples

whose true gold grade are lower than 10 g/t and some

samples whose true grade is higher than 10 g/t will not be

retrieved.
(2) We can look into the statistics of sampling and

assaying error. If we want to be reasonably sure of

finding all samples whose real gold grade is likely to be

greater than 10 then this is what we must do. The

statistics will help us to define some (lower) grade (say

7 g/t) which will allow us to be sure to some degree of

confidence (say 90%) that we have retrieved all the

samples that we want. Of course we also retrieve a

number of samples whose real gold grade is below 10 g/

t—but from reported grades, which are all we have,

there is no way to tell which is which. Given this lower

reported grade, we can substitute it in the SQL

statement and again use a standard database SELECT.

This is all very well for a simple retrieval, but what if

we want to do something more complex? Perhaps we

want to compare the grades in two different grain-size

fractions. We could of course do a simple SQL

comparison (e.g. ‘SELECT * FROM assaytable

WHERE Au14Au2’). This would work, but of course

only on reported values, not on the unknown real

grades. If we know something of the sample statistics,

we could use statistical methods such as a Student’s t

test, and even if we know very little, we could use non-

parametric statistics. But what can we do if one or both

of the grades are reported as ‘below detection limit’ or

‘trace’? What would SQL make of such a data value in

Au1 or Au2 or both?

Indeed, ‘trace’ or ‘below detection limit’ is a classic

example of incomplete or partially missing data. There is

some information (the grade is known to be very low)

but certainly not enough to be able to do numerical

comparisons between ‘trace’ values for different samples

(‘traceotrace’ should evaluate to unknown), though

some numerical comparisons between trace and actual

numeric values certainly are possible (‘traceo10 g=t’

evaluates to true, at least if they are interpreted purely as

reported values), so ‘trace’ cannot be treated as if it were

a ‘null’.

So how do we deal with such cases in a database?

Conventional logic allows for just two truth values, true

and false, leaving no room for uncertainty and no

provision for missing information. It was recognised

very early that this was inadequate for database

management systems, and the ‘null’ concept was

introduced. SQL provides a three-valued logic (3VL)

solution with most logical operations involving nulls

leading to a new logic value unknown. Unfortunately, as

discussed above, Date demonstrated that standard SQL

offers incomplete support even for this simple 3VL

model and as a result can lead to serious database

integrity problems. Date’s and Pascal’s ‘anti-null’

stance, as discussed above, and their proposed solutions,

are clearly inappropriate, and even Codd’s 4VL model is

probably inadequate. However, it can be argued that

Codd’s model might be generalised to an n-valued logic

model in order to handle the more complex situations of
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imprecise and partially missing data in fields such as the

geosciences. Alternatively, a general solution could well

be offered by the use of fuzzy logic (Bardossy and

Fodor, 2004) which might also avoid the extreme

complexity of n-valued logic systems which is feared

by Date. At present, however, much of the intelligence

needed for managing such data is developed on a case-

by-case basis for applications, with results including:
(a)
 database integrity can be compromised,
(b)
 database management systems with restricted logical

functionality can return incorrect results, and
(c)
 wheels are re-invented many times, with correspond-

ing waste of effort and risk of errors and incon-

sistencies.
There is a very large variety of applications software

used to process geological data. It is impossible to

generalise about how each of these programs treat

missing data. Indeed, this is the reason why it is so

important that the database management system must

provide a valid and consistent means of handling nulls.

One important area that remains to be dealt with is the

statistical and geostatistical treatment of imprecise and

incomplete data. Some work has been done on fuzzy

kriging (Bardossy and Fodor, 2004, Chapter 5) but this

addresses only a small part of the overall problem.
5. Conclusions

Commercial DBMSs that are accessed through SQL

are very bad at handling missing data, and have no

mechanisms at all for handling imprecise or ‘partially

missing’ data. They use an incomplete 3-valued logic,

and a ‘null’ whose meaning is not properly defined. In

the geosciences there is actually a wide range of types of

data which can be wholly or partially missing for various

reasons, and as a result any data management process

that relies on SQL cannot be relied upon to give correct

results.

Relational database specialists Codd, Date, and

Pascal are all in agreement that SQL is inadequate

(indeed incorrect) especially in its treatment of missing

data, however they disagree on how best the problem

should be solved. All of them argue in the context of

business data and fail to consider the more demanding

requirements of scientific data.

The differences between Codd and Date in their

approaches to the problem of nulls are highlighted in the

debate between them (Date, 1995, Chapter 9). Both use

a variety of esoteric arguments, but their positions can

be summarised simply. Date believes that a relational

database should contain no nulls at all. An operation on

a data item (say, testing for equality to a given string)
should produce just two possible answers—‘true’ or

‘false’—and all logic used should be restricted to these

two values. Codd takes a more pragmatic view that there

really are situations where the value of a data item is

unknown, and further that there are two sorts of

‘unknown’: missing and applicable and missing but

inapplicable. Codd does not dispute that reality (if it

could be known fully) contains only ‘true’ and ‘false’

statements, but asserts that nevertheless in the real world

as modelled by databases it is necessary to use 3- or 4-

valued truth tables (though this might not necessarily

require multi-valued logic).

Date’s preferred solution, the ‘default-value’ ap-

proach, avoids the use of anything identified as a ‘null’.

However, it merely shifts the burden of dealing with

missing information from the database management

system to the application or the user. The problem is

more acute for observational sciences such as geology

than for the commercial world, because there are many

more ways in which data may be missing or incomplete,

as discussed above. Furthermore, SQL-based database

management systems fail to meet the requirements of

either Date or Codd, and certainly fail to meet the more

complex requirements of geoscience.

Is there some compromise which meets the require-

ments of both Codd and Date? Indeed, are they even in

fundamental disagreement at all? And do we, as

practising geoscientists, need to worry ourselves about

all this theorising? The answers to these three questions,

in order, are ‘maybe’, ‘no’, and a resounding ‘yes’. It is

crucial that we understand how our database engines

work, and how to ensure the integrity of the data which

we use as our raw material for deposit modelling and

mine planning. Without panicking, we need to be aware

that the standard ODBC database interface behind our

mining software does not give us licence to forget about

the database problems. There are ways to deal with the

problems. From simpler to more complex:
1.
 attention to database design—for example, a full

understanding and proper use of relational database

normalization,
2.
 work-arounds to handle the various missing-data and

incomplete-data problems,
3.
 development of a more science-friendly database

management environment.
(1) is something that anyone should be able to do, and

should be required to do, when setting up and operating

a database. The database design process should always

include full normalisation at least to third normal form,

and this ought to eliminate any need for Codd’s

‘inapplicable’ missing values. However, it is possible to

take this process of normalisation to extremes where it

becomes self-defeating. Pascal’s suggestion that tables
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should be partitioned to remove all occurrences of nulls

could lead to an unworkably complex database.

(2) will certainly require some careful logical thinking

(especially when it involves slippery questions such as

geometric precision) and may require some applications

programming. It may be possible to develop work-

arounds to avoid the problems of handling nulls within

existing database management systems. This might

include the creation and use of special values (default

values) as advocated by Date. However, these will

require special treatment by applications—or if the user

has no access to applications coding, the use of specially

written software to convert and structure the data, as an

applications pre-processor.

(3) involves the development of a whole new database

management environment suitable for observational

sciences. It may not have the multi-user and transac-

tion-processing features required by an airline reserva-

tions system—but it would handle missing or incomplete

data in a consistent and logical way, and should provide

a rigorous framework for management of such data.

This is the real solution to the problem. Existing

database management systems are built on the ‘closed

world’ assumption that the database contains all data

relevant to the particular universe of discourse. In

observational sciences, an ‘open world’ model is more

appropriate. One of the implications of this is that there

must be proper provision for gaps in knowledge—

missing data—and one of the implications is that it may

be necessary to use a more complex logic system. While
Date may be right in stating that n-valued logic is too

complex, a practical and appropriate alternative may

already be available in fuzzy logic.
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