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Of the 16 dyadic operators of 2VL, only a small number are of practical use in 
database management systems. Most are of no importance. Those which are needed 
for data manipulation are AND and OR, which together with monadic operator NOT 
give all the functionality necessary. Why are these the only operators needed ? The 
reason is not that all other operators can be derived from them (as Date asserts) but 
that these are the operators which the user understands and finds useful, and which 
provide all the necessary capabilities. 
 
In the same way, there is no reason to expect the user to want more than the same set 
of operators in a 3VL - however many thousands might in theory be available. A 
strange operator that yields weird results (which is what most of the 19xxx 3VL 
operators must be) is really of no interest - and Date's use of this large number to 
frighten people away from 3VL does a disservice to rational discussion of the need for 
a way to represent incompleteness of their data sets: a thing which is very hard 
(indeed I would assert impossible) with 2VL.  
 
What may be needed is ultimately a more intelligent approach which allows 
representation of data with varying degrees of confidence - ranging from exact known 
values (as in the narrowly defined CWA 'relational' database of Date, Darwen, and 
Pascal), to completely missing data elements represented by placeholders (such as the 
SQL 'NULL') or missing tuples assumed to represent absence of information rather 
than falsehood; with in between, some way to represent data that have some degree of 
uncertainty or error. This was discussed in Henley (2005) but needs much further 
study. There have been a few attempts at developing 'fuzzy database systems' using 
the methods of fuzzy logic, but these have not been particularly successful and have 
not led to any mainstream products. 
 
One of the principal difficulties with the 'fuzzy' approach is that, while the data 
manipulation and the computation of probability estimates are straightforward, the 
method is always dependent upon subjective selection by the user (or in a dbms 
perhaps by the database administrator) of  probability distribution function and all of 
its parameters, for each attribute in each tuple. This imposes a major subjective input 
which could subvert the database by making the returned probability values 
unacceptable to users of the data. 
 
An alternative approach which is possible with some data - such as commonly in 
geology - is to encode any known 'hard' constrainbts such as maxima and/or minima, 
but to leave the value as completely unknown subject to these constraints. This could 
be implemented as a modification of Codd's 'mark' concept (Codd, 1990) as suggested 
by Henley (2005). However, it does not help in any way to avoid the use of 3VL. 
Such 'partially missing' or incomplete data would require special versions of 
numerical operators such as > that would return either known (true or false) or 
unknown truth values depending on the numeric values in the query.  
 
For example, in a drillhole database there might be an attribute "Top_Jurassic" for the 
"depth to the top of the Jurassic". If, in a given tuple, this depth is below the bottom of 



the hole at 350m, the attribute would be recorded as ">350m." For this tuple, the 
following queries would produce different results:- 
 

• WHERE Top_Jurassic > 300 would return TRUE unequivocally 
• WHERE Top_Jurassic < 200 would return FALSE unequivocally 
• WHERE Top_Jurassic > 400 would have to return UNKNOWN because the 

real value, if known, could be either in the range 350-400m, or greater than 
400m. 

 
Such semi-quantitative data are commonplace in geology and in other observational 
sciences, but are also more common than is generally thought in other fields. For 
example, the population of a city is unlikely ever to be known exactly (except in such 
cases as "Deadwood City, Colorado, pop.93"). Similarly, until the end of an 
accounting period an employee's expenses are unlikely to be known exactly if he'she 
has not submitted all claim forms - the value will be something like "≥£328" (being 
tht total of claims submitted to date, but with an unknown value of outstanding 
claims). There may of course also be an upper limit on this figure if the employer has 
an expense account policy which limits its employees' total expenses claims. So the 
value then might have to be recorded as "≥£328 and ≤£5000". 
 
Nevertheless, however complex the bounding parameters, such incomplete data will 
entail only the same 'unknown' truth value as with a simple ('NULL' style) missing 
data placeholder - so only a 3VL is needed.  
 
Another form of uncertain data is exemplified by laboratory analyses, where the 
reported value has a (usually implicit) associated uncertainty which can be 
represented numerically as a standard error. The standard error for geochemical data 
is the composition of sampling errors at different stages and the actual instrumental 
error. Commonly such errors have a gaussian distribution. Handling uncertain data of 
this sort in a database is problematic. For example, given an analysed value for Cu in 
a sample, recorded as 100ppm with a standard error of 10ppm, what is the correct 
truth value for the query 
 

WHERE Cu > 105ppm  ? 
 
Clearly it is possible that the true value is >105ppm, but also possible (and rather 
more likely) that it is <105ppm - but since both possibilities exist perhaps the answer 
should be returned as UNKNOWN. However, the reported value is 100ppm, so the 
answer conventionally would be FALSE. 
 
A better solution would be to return a probability estimate rather than TRUE, FALSE, 
or UNKNOWN. This uses similar numerical methods to the fuzzy databases, but the 
situation ought to be much better, because the error distribution can be determined 
objectively: there is a considerable body of theory to help estimate sampling error, 
and analytical instrument error is normally monitored routinely by laboratories. This 
may not be of course be the case for all uncertain data of this type - error distributions 
and their parameters may be unknown. This again is an area which requires much 
more work - and the database representation and manipulation are probably the easier 
parts of this question to resolve. 
 


